

INTERNATIONAL JOURNAL OF
MULTIDISCIPLINARY RESEARCH
IN SCIENCE, ENGINEERING AND TECHNOLOGY

Volume 6, Issue 4, April 2023

ISSN

INTERNATIONAL
STANDARD
SERIAL
NUMBER
INDIA

Impact Factor: 7.54

6381 907 438

6381 907 438

ijmrset@gmail.com

www.ijmrset.com

Optimizing Cloud Cost vs Reliability: Constraint-Based Scheduling for Multi-Cloud Enterprise Workloads

Madhu Babu Amarappalli

Platform Architect, Department of Cloud Architecture & Infrastructure Liberty Mutual Insurance, Mechanicsburg, Pennsylvania, USA

<https://orcid.org/0009-0009-2723-0256>

ABSTRACT: Enterprises increasingly adopt multi-cloud to reduce vendor risk and improve resiliency, yet they often face a hard tradeoff between minimizing spending and meeting strict reliability objectives. This paper proposes a **constraint-based scheduling** approach that models workload placement as a constrained optimization problem across multiple cloud providers, regions, and service tiers. We define cost, availability, and policy constraints (e.g., data residency, latency, capacity, and affinity/anti-affinity) and solve the placement using constraint programming / integer optimization. The approach supports reliability targets expressed as availability or error-budget style objectives while explicitly accounting for cost drivers such as instance pricing and cross-cloud data movement. A practical blueprint for implementation and evaluation is presented.

KEYWORDS: Multi-cloud, scheduling, constraint programming, reliability, cost optimization, SLO, availability

I. INTRODUCTION

Cloud computing enables on-demand access to configurable computing resources and has become a default platform for enterprise workloads [1]. As adoption grows, organizations increasingly operate in **multi-cloud** environments to improve resilience and reduce concentration risk, but this introduces operational complexity and cost sprawl that FinOps practices aim to control [2].

Reliability, meanwhile, is typically formalized through availability objectives (e.g., 99.9%+) and operational policies such as error budgets [3]. Major cloud architecture frameworks emphasize distributing workloads across failure domains (zones/regions) and designing for recovery and fault isolation [4], [5]. In containerized enterprise platforms (e.g., Kubernetes), schedulers already support constraints to spread replicas across failure domains for high availability [6], [7].

However, enterprise scheduling is no longer “pick the cheapest node.” It must simultaneously satisfy: (i) reliability targets, (ii) compliance and placement policies, (iii) performance/latency requirements, and (iv) budget constraints. This motivates a **constraint-based** formulation where the scheduler selects a placement that is *provable feasible* and *cost-optimal* (or near-optimal) under explicit reliability requirements.

II. LITERATURE VIEW

Large-scale cluster management and scheduling have evolved from centralized systems (e.g., Borg/Omega concepts that influenced Kubernetes) to constraint-driven placement with priorities and bin-packing [8]. Kubernetes exposes practical constraint mechanisms—node selection, affinity/anti-affinity, and topology spread—to control availability and utilization [6], [7], [14].

In cloud workflow and DAG scheduling research, the cost–reliability tradeoff has been explored by multi-cloud workflow schedulers that consider reliability as a first-class objective alongside cost and makespan [9]. Surveys highlight that multi-cloud scheduling must address heterogeneous pricing, resource models, and cross-cloud data transfer constraints, and that optimization objectives often conflict (cost vs. performance vs. reliability) [10], [11].

Reliability-aware optimization has also been studied in constrained workflow settings (e.g., minimizing execution cost under makespan and reliability constraints) [12]. From an optimization tooling perspective, modern constraint programming / integer optimization solvers (e.g., CP-SAT) are designed for expressing complex discrete constraints and solving large scheduling/assignment problems efficiently [13].

III. CONSTRAINT-BASED MULTI-CLOUD SCHEDULING MODEL AND OPERATIONALIZATION

Model and the practical elements needed to operationalize it.

1) System model (workloads, options, and failure domains)

Assume an enterprise workload portfolio consisting of applications decomposed into deployable units (services, jobs, or workflow tasks). For each deployable unit i , we define a set of candidate placement options j (provider \times region/zone \times instance/service tier \times pricing model).

We treat zones/regions as failure domains and enforce replicas spreading similar to topology-aware scheduling concepts [6], [7].

1.1 Workload decomposition

An enterprise workload portfolio is decomposed into *deployable units*, for example:

- **Microservices** (stateless web/API services)
- **Stateful services** (databases, coaches, queues)
- **Batch jobs** (ETL, ML training, reporting)
- **Workflow tasks** in DAGs (task dependencies with data exchange)

Let the set of deployable units be $I = \{1, 2, \dots, n\}$. Each unit i has a specification:

- **Resource demands:** $cpu_i, mem_i, gpu_i, disk_i$
- **Replication requirement:** r_i (e.g., 3 replicas for HA services, 1 for batch jobs)
- **SLO/reliability class:** e.g., Gold/Silver/Bronze (mapped to availability targets)
- **Compliance tags:** data residency, encryption requirements, approved providers
- **Traffic and dependency edges:** $(i \rightarrow k)$ with expected request rate / data volume

1.2 Candidate placement options

For each deployable unit i , define a set of candidate placement options:

$$J_i = \{j: (\text{provider} \times \text{region/zone} \times \text{tier} \times \text{pricing_model})\}$$

Each option j represents a concrete runtime target, e.g.:

- Provider = AWS / Azure / GCP
- Region = us-east / eu-west, Zone = a/b/c
- Tier = VM family, managed Kubernetes node pool, serverless tier
- Pricing model = on-demand, reserved, savings plan, spot/preemptible

For each option j , store attributes:

- Unit price $p_j^{compute}, p_j^{storage}$, and transfer prices if needed
- Capacity / quota bounds Cap_j^{cpu}, Cap_j^{mem}
- Estimated reliability score A_{ij} (or A_j if option reliability is workload-agnostic)
- Compliance eligibility (allowed/blocked per policy)
- Latency/distance characteristics to other regions/providers

1.3 Failure domains and spreading

Multi-cloud reliability improves when replicas are spread across **independent failure domains**:

- **Zone** (intra-region failures)
- **Region** (regional incidents)
- **Provider** (provider-wide issues, account issues, systemic outages)

Treat zones/regions as failure domains and enforce replica spreading using topology-aware scheduling concepts [6], [7]. In practice, “independence” is approximated using domain labels, for example:

- $domain(j) \in \{\text{provider, region, zone}\}$
- Topology constraints force replicas not to collapse into one domain.

2) Cost model

Total cost can be modeled as:

- **Computer cost:** instance/service runtime \times unit price.
- **Storage cost:** volume/object storage \times duration.
- **Data transfer cost:** especially cross-region/cross-cloud traffic (modeled as constraints or linear costs). FinOps principles motivate making these drivers explicit, measurable, and attributable to teams/services [2].

A practical cost model should match how finance actually sees bills while being “solver-friendly” (often linear or piecewise linear).

2.1 Total cost structure

For a planning horizon T (e.g., 1 hour, 1 day, 1 month), total cost:

$$Cost = Cost_{compute} + Cost_{storage} + Cost_{transfer} + Cost_{risk} \text{ (optional)}$$

2.2 Compute cost

For each deployment i assigned to option j , compute cost typically:

$$Cost_{compute} = \sum_i \sum_{j \in J_i} x_{ij} \cdot runtime_i(T) \cdot p_j^{compute}$$

Where:

- $x_{ij} \in \{0,1\}$ is the assignment decision (or per-replica decision if modeling replicas explicitly)
- $runtime_i(T)$ is expected active time during the horizon (1.0 for always-on services)

Enterprise detail: pricing model effects can be captured as:

- A fixed “commitment” cost for reserved capacity
- Lower marginal cost for usage under commitment
- Penalty terms for using on-demand above a threshold

If you want to keep it simple for publication, state that pricing model is embedded in $p_j^{compute}$ per option.

2.3 Storage cost

Storage cost depends on volume/object size and retention:

$$Cost_{storage} = \sum_i \sum_{j \in J_i} x_{ij} \cdot storage_i(T) \cdot p_j^{storage}$$

For stateful services, including replication factor and snapshot/backup requirements.

2.4 Data transfer cost

Transfer is often where multi-cloud gets expensive. Model either as:

- **Linear cost:** $volume_{ik}(T) \cdot p_{j \rightarrow l}^{transfer}$
- **Hard constraint:** forbid high-egress edges or cap cross-cloud transfer

Example:

$$Cost_{transfer} = \sum_{(i \rightarrow k)} \sum_{j \in J_i} \sum_{l \in J_k} x_{ij} x_{kl} \cdot traffic_{ik}(T) \cdot p_{j \rightarrow l}^{egress}$$

This term is quadratic. To keep it solver-friendly, operational systems often:

- Approximate using precomputed penalties per placement pair (then linearize)
- Restrict transfers with constraints (e.g., “service i and k must be co-region”)

2.5 FinOps operationalization

FinOps principles motivate making these drivers explicit, measurable, and attributable [2]:

- Every deployable unit has cost center tags (team/app/env)
- The scheduler produces a cost breakdown per service and per domain
- Decisions can be justified: “this placement meets SLO at lowest expected cost”

3) Reliability model (availability and redundancy)

Reliability targets can be expressed as:

- **Availability constraints:** e.g., service availability \geq target, aligned with standard availability interpretation in cloud architecture guidance [4].
- **Error-budget constraints:** allow a bounded level of failure/latency violation over a window, consistent with SRE practices [3].

A simple, implementable approximation is to map each placement option to an estimated availability score A_{ij} (from historical telemetry, platform SLOs, or internal reliability scoring). For replicated services, the effective availability can be approximated via redundant placement across independent failure domains (zones/regions), and enforced via constraints (e.g., at least k replicas across ≥ 2 zones).

Reliability requirements should be expressed as constraints that are auditable and enforceable.

3.1 Reliability targets as constraints

Common forms:

- **Availability constraints:** $Availability_i \geq Target_i$ [4]
- **Error-budget constraints:** failure/latency violations bounded over a window [3]

In enterprise practice, teams often define service tiers:

- Gold: 99.95%+; multi-zone required; sometimes multi-region
- Silver: 99.9%; multi-zone preferred
- Bronze: best-effort; single-zone allowed

3.2 Availability scoring for placement options

A simple implementable approximation maps each option to an availability estimate:

- A_{ij} = predicted availability of unit i if placed on option j

This can be derived from:

- Historical incident/uptime telemetry
- Internal SLO dashboards per region/cluster
- Known risk factors (spot interruption rate, quota volatility, past outages)

You can frame A_{ij} as either:

- Direct **availability probability**, or
- A **reliability score** that ranks options consistently

3.3 Redundancy through replica placement

For replicated services, reliability is improved by spreading replicas across independent failure domains. In a paper, you can describe two approaches:

Approach A (constraint-only, practical and robust):

Don't compute exact availability; enforce redundancy rules:

- At least k replicas across zones (or ≥ 2 regions for higher tiers)
- No two replicas in the same zone for critical services

This aligns directly with topology-aware constraints [6], [7] and multi-location guidance [4], [5].

Approach B (approximate availability aggregation):

If you assume independence across domains, you can approximate service availability as:

$$Availability_i \approx 1 - \prod_{replica\ r} (1 - A_{i,placement(r)})$$

This is nonlinear; many implementations avoid exact multiplication and instead:

- Use redundancy constraints plus minimum per-replica quality thresholds
- Or linearize via piecewise approximations

3.4 Reliability in multi-cloud reality

Even with spreading, “independence” is imperfect (shared DNS, shared identity provider, common CI/CD). Operationally, you can add constraints like:

- Separate control-plane dependencies (e.g., avoid same IDP region)
- Require “provider diversity” for gold tier: ≥ 2 providers for critical services
- Limit correlated risk domains (e.g., avoid two regions with shared backbone dependency)

4) Constraint-based formulation (CP/MILP style)

Let binary decision variable $x_{ij} \in \{0,1\}$ indicate whether deployable unit i is assigned to option j .

Core constraints (examples):

- **Assignment:** each unit placed exactly once (or exactly r_i replicas).
- **Capacity:** do not exceed quotas/capacity of each option (CPU, memory, GPUs).
- **Affinity/anti-affinity:** co-locate or separate services (e.g., separate replicas).
- **Topology spread** distribute replicas across zones/regions for HA [6], [7].
- **Compliance constraints:** data residency, restricted regions, approved providers.
- **Latency constraints:** keep dependent services within acceptable RTT bounds.
- **Reliability constraints:** enforce minimum reliability score / redundancy rules consistent with multi-location reliability guidance [4], [5].

Objective (single or multi-objective):

- Minimize total cost subject to reliability \geq target, or
- Maximize reliability subject to budget \leq limit, or
- Use weighted sum: minimize Cost + $\lambda \cdot$ ReliabilityPenalty.

These problems map naturally to CP-SAT / integer optimization, which supports integer decision variables and rich constraint constructs [13].

4.1 Decision variables

The simplest assignment variable:

$x_{ij} \in \{0,1\}$, 1 if unit i is assigned to option j

If you model replicas explicitly:

- Let replicas be (i, r) where $r = 1..r_i$
- Variable becomes x_{irj}

4.2 Core constraints (examples)

(a) Assignment constraint

Exactly one placement per unit (or per replica):

$$\sum_{j \in J_i} x_{ij} = 1 \forall i$$

Or for replicas:

$$\sum_{j \in J_i} x_{irj} = 1 \forall i, r$$

(b) Capacity / quota constraint

For each option j :

$$\begin{aligned} \sum_i x_{ij} \cdot c_{pu_i} &\leq Cap_j^{cpu} \\ \sum_i x_{ij} \cdot mem_i &\leq Cap_j^{mem} \end{aligned}$$

(Extend similarly for GPU, storage IOPS, etc.)

(c) Affinity / anti-affinity constraints

- Anti-affinity (separate replicas):

$$x_{irj} + x_{ir'j} \leq 1 \text{ for } r \neq r'$$

- Affinity (co-locate services i and k into same region):

$$\sum_{j \in \text{Region}(R)} x_{ij} = \sum_{j \in \text{Region}(R)} x_{kj} \forall R$$

(There are several ways to express this; pick one that fits your narrative.)

(d) Topology spread constraints (HA)

For each service i , ensure replicas are distributed across zones/regions [6], [7]:

- “At least two zones used”
- “Max skew” type rules (no zone has too many replicas)

(e) Compliance constraints

If option j violates policy for service i , forbid it:

$$x_{ij} = 0 \text{ if } (i, j) \text{ is noncompliant}$$

Examples:

- Data residency: allow only J_i in specific regions
- Approved providers: remove non-approved providers from J_i

(f) Latency constraints

For dependency edge $i \rightarrow k$, require region pairing within RTT threshold:

- Either forbid cross-region placement pairs that exceed latency
- Or cap the number of “far edges” for performance-critical paths

(g) Reliability constraints

Several implementable patterns:

- Minimum placement quality:

$$\sum_{j \in J_i} x_{ij} \cdot A_{ij} \geq A_i^{\min}$$

- Redundancy rule constraints (recommended in practice):

- ≥ 2 zones
- $\geq k$ replicas

- Optional provider diversity for top-tier services

This aligns with multi-location reliability guidance [4], [5].

4.3 Objective functions

Common objectives:

(1) Minimize cost subject to reliability constraints

$$\min \text{Costs.t. constraints and } \text{Reliability}_i \geq \text{Target}_i$$

(2) Maximize reliability subject to a budget

$$\max \text{ReliabilityScores.t. Cost} \leq \text{Budget}$$

(3) Weighted tradeoff

$$\min(\text{Cost} + \lambda \cdot \text{ReliabilityPenalty})$$

Where penalty might represent:

- Violations of soft constraints
- Expected downtime cost
- Risk score for correlated domains

These problems map naturally to CP-SAT / integer optimization frameworks supporting rich constraints [13].

5) Practical scheduling workflow (enterprise-ready)

A pragmatic implementation loop:

1. **Ingest requirements:** per-service SLO/availability class, compliance tags, resource requests.
2. **Generate options:** candidate clouds/regions/tiers; filter forbidden placements.
3. **Score inputs:** cost estimates, risk/reliability scores, latency estimates.
4. **Solve:** run CP-SAT to produce a feasible, optimized plan [13].
5. **Enforce in runtime:** translate decisions into deployment policies (e.g., Kubernetes constraints) [6], [7].
6. **Observe + reoptimize** periodically re-solve when prices, demand, or reliability posture changes.

A production-grade system needs more than a solver—it needs a reliable pipeline of inputs, governance, and continuous re-optimization.

5.1 Ingest requirements (policy + SLO + resources)

Inputs typically come from:

- Service catalog (ownership, tier, dependencies)
- IaC manifests (CPU/memory requests, replica counts)
- SRE policy (SLO targets, error budgets) [3]
- Security/compliance policy engine (region/provider restrictions)

Output: a normalized specification per deployable unit.

5.2 Generate options (candidate clouds/regions/tiers)

Construct J_i by:

- Enumerating allowed providers/regions
- Enumerating feasible compute tiers (meets CPU/mem/GPU)
- Applying quota filters and “blocked” lists
- (Optional) adding “preferred” pools (existing reserved capacity)

This stage often removes 80–95% of theoretical options.

5.3 score inputs (cost, reliability, latency)

Maintain three continuously updated datasets:

- **Pricing tables** (compute/storage/transfer)
- **Reliability/incident history** per provider-region-zone/cluster
- **Latency matrix** (region-to-region RTT estimates, or measured service mesh telemetry)

Convert them into solver-ready scalars:

- p_j cost coefficients
- A_{ij} availability/reliability scores
- Allowed/forbidden pairing tables for latency/compliance

5.4 Solve (CP-SAT)

Run CP-SAT to produce:

- A feasible placement plan
- Objective value and constraint satisfaction report
- (Optional) alternatives: top-k solutions for human review [13]

Operational detail: large portfolios are usually solved by:

- Partitioning by environment (prod vs dev), geography, or dependency clusters
- Using rolling horizon solving (solve what changes, keep stable assignments fixed)

5.5 Enforce at runtime (Kubernetes / platform)

Translate solver decisions into enforceable policies:

- Node labels/taints and **node selectors**
- Affinity/anti-affinity rules
- Topology spread constraints for HA [6], [7]
- Admission control / policy-as-code to prevent drift

This ensures the “plan” becomes real scheduling behavior.

5.6 Observe + reoptimize (closed-loop control)

Preoptimization triggers:

- Price changes (reserved/spot shifts, increases)
- Reliability posture changes (incident spikes in a region)
- Demand growth (capacity pressure)
- Policy updates (new compliance requirements)

A typical cadence:

- **Daily** for cost optimization in non-critical environments
- **Weekly** or event-driven for production to avoid unnecessary churn

To limit instability, introduce **migration cost** or **change budget** constraints (e.g., “move at most 5% of services per run unless incident-driven”).

IV. CHALLENGES

1. **Reliable reliability inputs:** Availability/risk scoring can be noisy and non-stationary (incidents, provider outages, changing dependencies). Using simple scores is practical but imperfect; better models may be needed for mission-critical workloads [3], [4].
2. **Cross-cloud data gravity and egress:** Data transfer costs and latency can dominate, and constraints can become non-linear.
3. **Heterogeneity:** Providers differ in instance families, networking, and managed service semantics; mapping them to a unified option set is complex [11].
4. **Scale and solver performance:** Real portfolios may include thousands of services and constraints; decomposition, heuristics, and incremental solving may be required even with strong solvers [13].
5. **Operational alignment:** Scheduling decisions must align with SRE/FinOps governance—error budgets, change management, and accountability models [2], [3].
6. **Constraint drift:** Policies evolve (security, compliance, org rules). Ensuring the model matches reality is an ongoing engineering task.

V. FUTURE

- **Stochastic / robust optimization:** explicitly model uncertainty in demand, outages, and price fluctuations to avoid brittle placements.
- **Closed-loop reliability control:** integrate error-budget burn rate signals to trigger re-placement or replica adjustments [3].
- **Multi-objective Pareto planning:** present decision-makers with Pareto frontiers (cost vs. reliability vs. latency) rather than a single answer.
- **Deeper platform integration:** generate Kubernetes-native policies (affinity/spread/bin-pack tuning) directly from the solver output [6], [14].
- **Governance automation:** tie outputs to FinOps tagging, show back/chargeback, and policy-as-code enforcement [2].

VI. CONCLUSION

Multi-cloud enterprise scheduling requires balancing cost control with reliability guarantees under complex real-world constraints. This paper presented a constraint-based scheduling approach that formalizes placement as an optimization problem with explicit reliability objectives, compliance rules, and topology constraints. By leveraging modern constraint programming / integer optimization and enforcing results through platform schedulers, enterprises can produce placements that are both economically efficient and reliability-aware, while remaining auditable and policy-driven.

REFERENCES

1. P. Mell and T. Grance, “The NIST Definition of Cloud Computing (SP 800-145),” NIST, 2011. [NIST Publications](#)
2. FinOps Foundation, “FinOps Framework / What is FinOps,” updated Jan. 2021. [FinOps Foundation+1](#)
3. Google SRE, “Error Budget Policy,” *Site Reliability Engineering Workbook*. [Google SRE](#)

4. AWS, "Well-Architected Reliability Pillar: Deploy the workload to multiple locations (REL10-BP01)," AWS Documentation. [AWS Documentation](#)
5. Microsoft, "Azure Well-Architected Framework — Reliability," Microsoft Learn. [Microsoft Learn+1](#)
6. Kubernetes, "Pod Topology Spread Constraints," Kubernetes Documentation (updated Oct. 27, 2022). [Kubernetes](#)
7. Kubernetes, "Assigning Pods to Nodes," Kubernetes Documentation (updated Aug. 2, 2021). [Kubernetes](#)
8. B. Burns et al., "Borg, Omega, and Kubernetes," (paper PDF). [Google Research](#)
9. A. Tekawade and S. Banerjee, "Cost and Reliability Aware Scheduling of Workflows Across Multiple Clouds with Security Constraints," arXiv:2304.00313, 2021. [arXiv](#)
10. M. U. Sana et al., "Efficiency aware scheduling techniques in cloud computing," 2021 (open-access article). [PubMed Central](#)
11. Q. Zhang et al., "Survey on Task Scheduling Optimization Strategy under Multi-Cloud," 2022. [ScienceDirect](#)
12. X. Fu et al., "Reliability Aware Cost Optimization for Cloud Workflows under Constraints," (paper PDF). [East China Normal University Faculty](#)
13. Google, "CP-SAT Solver — OR-Tools," Google Developers Documentation (updated Aug. 28, 2022). [Google for Developers](#)
14. Kubernetes, "Resource Bin Packing," Kubernetes Documentation (updated Oct. 10, 2023). [Kubernetes](#)
15. Naga Ramesh Palakurti, [Governance Strategies for Ensuring Consistency and Compliance in Business Rules Management](#), 2023, <https://philpapers.org/rec/NAGGSF>

ISSN

INTERNATIONAL
STANDARD
SERIAL
NUMBER
INDIA

INTERNATIONAL JOURNAL OF MULTIDISCIPLINARY RESEARCH IN SCIENCE, ENGINEERING AND TECHNOLOGY

| Mobile No: +91-6381907438 | Whatsapp: +91-6381907438 | ijmrset@gmail.com |