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ABSTRACT: Enterprises increasingly adopt multi-cloud to reduce vendor risk and improve resiliency, yet they often
face a hard tradeoff between minimizing spending and meeting strict reliability objectives. This paper proposes a
constraint-based scheduling approach that model’s workload placement as a constrained optimization problem across
multiple cloud providers, regions, and service tiers. We define cost, availability, and policy constraints (e.g., data
residency, latency, capacity, and affinity/anti-affinity) and solve the placement using constraint programming / integer
optimization. The approach supports reliability targets expressed as availability or error-budget style objectives while
explicitly accounting for cost drivers such as instance pricing and cross-cloud data movement. A practical blueprint for
implementation and evaluation is presented.
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1. INTRODUCTION

Cloud computing enables on-demand access to configurable computing resources and has become a default platform
for enterprise workloads [1]. As adoption grows, organizations increasingly operate in multi-cloud environments to
improve resilience and reduce concentration risk, but this introduces operational complexity and cost sprawl that
FinOps practices aim to control [2].

Reliability, meanwhile, is typically formalized through availability objectives (e.g., 99.9%+) and operational policies
such as error budgets [3]. Major cloud architecture frameworks emphasize distributing workloads across failure
domains (zones/regions) and designing for recovery and fault isolation [4], [5]. In containerized enterprise platforms
(e.g., Kubernetes), schedulers already support constraints to spread replicas across failure domains for high availability

[6], [7].

However, enterprise scheduling is no longer “pick the cheapest node.” It must simultaneously satisfy: (i) reliability
targets, (ii) compliance and placement policies, (iii) performance/latency requirements, and (iv) budget constraints.
This motivates a constraint-based formulation where the scheduler selects a placement that is provably feasible and
cost-optimal (or near-optimal) under explicit reliability requirements.

II. LITERATURE VIEW

Large-scale cluster management and scheduling have evolved from centralized systems (e.g., Borg/Omega concepts
that influenced Kubernetes) to constraint-driven placement with priorities and bin-packing [8]. Kubernetes exposes
practical constraint mechanisms—node selection, affinity/anti-affinity, and topology spread—to control availability and
utilization [6], [7], [14].

In cloud workflow and DAG scheduling research, the cost—reliability tradeoff has been explored by multi-cloud
workflow schedulers that consider reliability as a first-class objective alongside cost and makespan [9]. Surveys
highlight that multi-cloud scheduling must address heterogeneous pricing, resource models, and cross-cloud data
transfer constraints, and that optimization objectives often conflict (cost vs. performance vs. reliability) [10], [11].
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Reliability-aware optimization has also been studied in constrained workflow settings (e.g., minimizing execution cost
under makespan and reliability constraints) [12]. From an optimization tooling perspective, modern constraint
programming / integer optimization solvers (e.g., CP-SAT) are designed for expressing complex discrete constraints
and solving large scheduling/assignment problems efficiently [13].

III. CONSTRAINT-BASED MULTI-CLOUD SCHEDULING MODEL AND OPERATIONALIZATION

Model and the practical elements needed to operationalize it.

1) System model (workloads, options, and failure domains)

Assume an enterprise workload portfolio consisting of applications decomposed into deployable units (services, jobs,
or workflow tasks). For each deployable unit i, we define a set of candidate placement options j(provider X region/zone
X instance/service tier x pricing model).

We treat zones/regions as failure domains and enforce replicas spreading similar to topology-aware scheduling concepts

(6], [7].

1.1 Workload decomposition

An enterprise workload portfolio is decomposed into deployable units, for example:
e Microservices (stateless web/API services)

o Stateful services (databases, coaches, queues)

e Batch jobs (ETL, ML training, reporting)

o  Workflow tasks in DAGs (task dependencies with data exchange)

Let the set of deployable units be I = {1,2, ..., n}. Each unit ihas a specification:

e Resource demands: cpu;, mem;, gpu;, disk;

Replication requirement: 7;(e.g., 3 replicas for HA services, 1 for batch jobs)
SLO/reliability class: e.g., Gold/Silver/Bronze (mapped to availability targets)
Compliance tags: data residency, encryption requirements, approved providers
Traffic and dependency edges: (i — k)with expected request rate / data volume

1.2 Candidate placement options
For each deployable unit i, define a set of candidate placement options:
Ji = {j: (provider X region/zone X tier X pricing_model)}
Each option jrepresents a concrete runtime target, €.g.:
e Provider = AWS / Azure / GCP
e Region = us-east / eu-west, Zone = a/b/c
e Tier = VM family, managed Kubernetes node pool, serverless tier
e Pricing model = on-demand, reserved, savings plan, spot/preemptible
For each option j, store attributes:
e Unit price pfompute, jwm‘q ¢, and transfer prices if needed
e Capacity / quota bounds C ap;pu, Cap/™™
e Estimated reliability score 4;;(or A;if option reliability is workload-agnostic)
e Compliance eligibility (allowed/blocked per policy)
e Latency/distance characteristics to other regions/providers

1.3 Failure domains and spreading

Multi-cloud reliability improves when replicas are spread across independent failure domains:

e Zone (intra-region failures)

e Region (regional incidents)

e Provider (provider-wide issues, account issues, systemic outages)

Treat zones/regions as failure domains and enforce replica spreading using topology-aware scheduling concepts [6],
[7]. In practice, “independence” is approximated using domain labels, for example:

e domain(j) € {provider,region,zone}

o Topology constrains force replicas not to collapse into one domain.
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2) Cost model

Total cost can be modeled as:

o Computer cost: instance/service runtime X unit price.

e Storage cost: volume/object storage x duration.

e Data transfer cost: especially cross-region/cross-cloud traffic (modeled as constraints or linear costs).
FinOps principles motivate making these drivers explicit, measurable, and attributable to teams/services [2].

A practical cost model should match how finance actually sees bills while being “solver-friendly” (often linear or
piecewise linear).

2.1 Total cost structure
For a planning horizon T(e.g., 1 hour, 1 day, 1 month), total cost:
Cost = CoSteompute + COStsrorage + COStiransper + COSty g (Optional)

2.2 Compute cost
For each deployment iassigned to option j, compute cost typically:

CoSteompute = z x;j - runtime;(T) - pfompute
J€li
l
Where:
e x;; € {0,1}is the assignment decision (or per-replica decision if modeling replicas explicitly)
o runtime;(T)is expected active time during the horizon (1.0 for always-on services)

Enterprise detail: pricing model effects can be captured as:

o A fixed “commitment” cost for reserved capacity

e Lower marginal cost for usage under commitment

e Penalty terms for using on-demand above a threshold

compute

If you want to keep it simple for publication, state that pricing model is embedded in p;

i per option.

2.3 Storage cost
Storage cost depends on volume/object size and retention:

_ storage
Costgtorage = z Xij - storage;(T) "D}
JEJi
i

For stateful services, including replication factor and snapshot/backup requirements.

2.4 Data transfer cost
Transfer is often where multi-cloud gets expensive. Model either as:
. transfer
e Linear cost: volume; (T) - Do
e Hard constraint: forbid high-egress edges or cap cross-cloud transfer

Example:
. egress
Costiransfer = E E Z Xij X - trafficy(T) - pjgl
leJk

(i-k) €
This term is quadratic. To keep it solver-friendly, operational systems often:

e Approximate using precomputed penalties per placement pair (then linearize)
e Restrict transfers with constraints (e.g., “service i and k must be co-region”)
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2.5 FinOps operationalization

FinOps principles motivate making these drivers explicit, measurable, and attributable [2]:
e Every deployable unit has cost center tags (team/app/env)

e The scheduler produces a cost breakdown per service and per domain

e Decisions can be justified: “this placement meets SLO at lowest expected cost”

3) Reliability model (availability and redundancy)

Reliability targets can be expressed as:

e Availability constraints: e.g., service availability > target, aligned with standard availability interpretation in cloud
architecture guidance [4].

e Error-budget constraints: allow a bounded level of failure/latency violation over a window, consistent with SRE
practices [3].

A simple, implementable approximation is to map each placement option to an estimated availability score A;;(from
historical telemetry, platform SLOs, or internal reliability scoring). For replicated services, the effective availability can
be approximated via redundant placement across independent failure domains (zones/regions), and enforced via
constraints (e.g., at least kreplicas across >2 zones).

Reliability requirements should be expressed as constraints that are auditable and enforceable.

3.1 Reliability targets as constraints

Common forms:

e Availability constraints: Availability; = Target;[4]

e Error-budget constraints: failure/latency violations bounded over a window [3]
In enterprise practice, teams often define service tiers:

e Gold: 99.95%+; multi-zone required; sometimes multi-region

e Silver: 99.9%; multi-zone preferred

e Bronze: best-effort; single-zone allowed

3.2 Availability scoring for placement options

A simple implementable approximation maps each option to an availability estimate:
e A;;=predicted availability of unit {if placed on option j

This can be derived from:

e Historical incident/uptime telemetry

o Internal SLO dashboards per region/cluster

o Known risk factors (spot interruption rate, quota volatility, past outages)

You can frame A;;as either:

o Direct availability probability, or

o A reliability score that ranks options consistently

3.3 Redundancy through replica placement
For replicated services, reliability is improved by spreading replicas across independent failure domains. In a paper,
you can describe two approaches:

Approach A (constraint-only, practical and robust):

Don’t compute exact availability; enforce redundancy rules:

e At least kreplicas across zones (or >2 regions for higher tiers)

e No two replicas in the same zone for critical services

This aligns directly with topology-aware constraints [6], [7] and multi-location guidance [4], [5].

Approach B (approximate availability aggregation):
If you assume independence across domains, you can approximate service availability as:

Availability; = 1 — H (l - Ai.p\!'uf'r:rnf'mlr'I}

replica v
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This is nonlinear; many implementations avoid exact multiplication and instead:
e Use redundancy constraints plus minimum per-replica quality thresholds
e Or linearize via piecewise approximations

3.4 Reliability in multi-cloud reality

Even with spreading, “independence” is imperfect (shared DNS, shared identity provider, common CI/CD).
Operationally, you can add constraints like:

e Separate control-plane dependencies (e.g., avoid same IDP region)

e Require “provider diversity” for gold tier: >2 providers for critical services

e Limit correlated risk domains (e.g., avoid two regions with shared backbone dependency)

4) Constraint-based formulation (CP/MILP style)

Let binary decision variable x;; € {0,1}indicate whether deployable unit iis assigned to option j.
Core constraints (examples):

e Assignment: each unit placed exactly once (or exactly r;replicas).

o Capacity: do not exceed quotas/capacity of each option (CPU, memory, GPUs).

o Affinity/anti-affinity: co-locate or separate services (e.g., separate replicas).

Topology spread distribute replicas across zones/regions for HA [6], [7].

Compliance constraints: data residency, restricted regions, approved providers.

Latency constraints: keep dependent services within acceptable RTT bounds.

Reliability constraints: enforce minimum reliability score / redundancy rules consistent with multi-location
reliability guidance [4], [5].

Objective (single or multi-objective):

e Minimize total cost subject to reliability > target, or

e Maximize reliability subject to budget < limit, or

e Use weighted sum: minimize Cost + A - ReliabilityPenalty.

These problems map naturally to CP-SAT / integer optimization, which supports integer decision variables and rich
constraint constructs [13].

4.1 Decision variables
The simplest assignment variable:
x;; € {0,1},1 if unit i is assigned to option j
If you model replicas explicitly:
e Letreplicas be (i*r)where r = 1..7;
e Variable becomes x;;

4.2 Core constraints (examples)
(a) Assignment constraint
Exactly one placement per unit (or per replica):

Z xl-j =1Vi
J€Ji

Z xirj = 1Vl, T

JEJi

Or for replicas:

(b) Capacity / quota constraint
For each option j:

cpu
le-j s cpu; < Capj
i
le-j -mem; < Cap}**™
i

(Extend similarly for GPU, storage IOPS, etc.)
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(c) Affinity / anti-affinity constraints
e Anti-affinity (separate replicas):
Xipj + Xyt ; < Morr # 1/
o Affinity (co-locate services i and k into same region):

xL-j = Z xkj VR

j€ERegion(R) j€ERegion(R)
(There are several ways to express this; pick one that fits your narrative.)

(d) Topology spread constraints (HA)

For each service i, ensure replicas are distributed across zones/regions [6], [7]:
e “Atleast two zones used”

e “Max skew” type rules (no zone has too many replicas)

(e) Compliance constraints
If option jviolates policy for service i, forbid it:
x;; = 0if (i, j) is noncompliant
Examples:
e Data residency: allow only J;in specific regions
e Approved providers: remove non-approved providers from J;

(f) Latency constraints

For dependency edge i — k, require region pairing within RTT threshold:
o Either forbid cross-region placement pairs that exceed latency

e Or cap the number of “far edges” for performance-critical paths

(g) Reliability constraints
Several implementable patterns:
e Minimum placement quality:

Z x;j - Ay = A
JeJi

e Redundancy rule constraints (recommended in practice):

o >2 zones

o =>kreplicas

o Optional provider diversity for top-tier services

This aligns with multi-location reliability guidance [4], [5].

4.3 Objective functions
Common objectives:
(1) Minimize cost subject to reliability constraints
min Costs.t. constraints and Reliability; = Target;
(2) Maximize reliability subject to a budget
max ReliabilityScores.t. Cost < Budget
(3) Weighted tradeoff
min(Cost + A - ReliabilityPenalty)

Where penalty might represent:

e Violations of soft constraints

e Expected downtime cost

e Risk score for correlated domains

These problems map naturally to CP-SAT / integer optimization frameworks supporting rich constraints [13].
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5) Practical scheduling workflow (enterprise-ready)
A pragmatic implementation loop:

1. Ingest requirements: per-service SLO/availability class, compliance tags, resource requests.

Generate options: candidate clouds/regions/tiers; filter forbidden placements.
Score inputs: cost estimates, risk/reliability scores, latency estimates.
Solve: run CP-SAT to produce a feasible, optimized plan [13].

bl

Enforce in runtime: translate decisions into deployment policies (e.g., Kubernetes constraints) [6], [7].
6. Observe + reoptimize periodically re-solve when prices, demand, or reliability posture changes.

A production-grade system needs more than a solver—it needs a reliable pipeline of inputs, governance, and continuous

re-optimization.

5.1 Ingest requirements (policy + SLO + resources)

Inputs typically come from:

e Service catalog (ownership, tier, dependencies)

e JaC manifests (CPU/memory requests, replica counts)

e SRE policy (SLO targets, error budgets) [3]

e Security/compliance policy engine (region/provider restrictions)
Output: a normalized specification per deployable unit.

5.2 Generate options (candidate clouds/regions/tiers)

Construct J;by:

e Enumerating allowed providers/regions

e Enumerating feasible compute tiers (meets CPU/mem/GPU)

e Applying quota filters and “blocked” lists

e (Optional) adding “preferred” pools (existing reserved capacity)
This stage often removes 80—-95% of theoretical options.

5.3 score inputs (cost, reliability, latency)

Maintain three continuously updated datasets:

o Pricing tables (compute/storage/transfer)

o Reliability/incident history per provider-region-zone/cluster

e Latency matrix (region-to-region RTT estimates, or measured service mesh telemetry)
Convert them into solver-ready scalars:

e pjcost coefficients

e Aj;javailability/reliability scores

o Allowed/forbidden pairing tables for latency/compliance

5.4 Solve (CP-SAT)

Run CP-SAT to produce:

o A feasible placement plan

e Objective value and constraint satisfaction report

e (Optional) alternatives: top-k solutions for human review [13]

Operational detail: large portfolios are usually solved by:

e Partitioning by environment (prod vs dev), geography, or dependency clusters

e Using rolling horizon solving (solve what changes, keep stable assignments fixed)

5.5 Enforce at runtime (Kubernetes / platform)
Translate solver decisions into enforceable policies:

e Node labels/taints and node selectors

o Affinity/anti-affinity rules

e Topology spread constraints for HA [6], [7]

e Admission control / policy-as-code to prevent drift
This ensures the “plan” becomes real scheduling behavior.
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5.6 Observe + reoptimize (closed-loop control)

Preoptimization triggers:

e Price changes (reserved/spot shifts, increases)

o Reliability posture changes (incident spikes in a region)

e Demand growth (capacity pressure)

e Policy updates (new compliance requirements)

A typical cadence:

e Daily for cost optimization in non-critical environments

e  Weekly or event-driven for production to avoid unnecessary churn
To limit instability, introduce migration cost or change budget constraints (e.g., “move at most 5% of services per run
unless incident-driven”).

IV. CHALLENGES

1. Reliable reliability inputs: Availability/risk scoring can be noisy and non-stationary (incidents, provider outages,
changing dependencies). Using simple scores is practical but imperfect; better models may be needed for mission-
critical workloads [3], [4].

2. Cross-cloud data gravity and egress: Data transfer costs and latency can dominate, and constraints can become
non-linear.

3. Heterogeneity: Providers differ in instance families, networking, and managed service semantics; mapping them to
a unified option set is complex [11].

4. Scale and solver performance: Real portfolios may include thousands of services and constraints; decomposition,
heuristics, and incremental solving may be required even with strong solvers [13].

5. Operational alignment: Scheduling decisions must align with SRE/FinOps governance—error budgets, change
management, and accountability models [2], [3].

6. Constraint drift: Policies evolve (security, compliance, org rules). Ensuring the model matches reality is an
ongoing engineering task.

V. FUTURE

o Stochastic / robust optimization: explicitly model uncertainty in demand, outages, and price fluctuations to avoid
brittle placements.

o Closed-loop reliability control: integrate error-budget burn rate signals to trigger re-placement or replica
adjustments [3].

e Multi-objective Pareto planning: present decision-makers with Pareto frontiers (cost vs. reliability vs. latency)
rather than a single answer.

o Deeper platform integration: generate Kubernetes-native policies (affinity/spread/bin-pack tuning) directly from
the solver output [6], [14].

e Governance automation: tie outputs to FinOps tagging, show back/chargeback, and policy-as-code enforcement

[2].
VI. CONCLUSION

Multi-cloud enterprise scheduling requires balancing cost control with reliability guarantees under complex real-world
constraints. This paper presented a constraint-based scheduling approach that formalizes placement as an optimization
problem with explicit reliability objectives, compliance rules, and topology constraints. By leveraging modern
constraint programming / integer optimization and enforcing results through platform schedulers, enterprises can
produce placements that are both economically efficient and reliability-aware, while remaining auditable and policy-
driven.
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